74 research outputs found

    A study of patent thickets

    Get PDF
    Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area

    Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia

    Get PDF
    Relapse is a major problem in acute myeloid leukemia (AML) and adversely impacts survival. In this phase II study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms’ tumor 1 (WT1) mRNA as post-remission treatment in 30 AML patients at very high risk of relapse. There was a demonstrable anti-leukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which are sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in non-responders (53.8% vs. 25.0%; P=0.01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25% and the 5-year relapse-free survival was higher in responders than in non-responders (50% vs. 7.7%; P65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared to 51.7% and 18% in the Swedish Acute Leukemia Registry (SALR). Long-term clinical response was correlated with increased circulating frequencies of poly-epitope WT1-specific CD8+ T-cells. Long-term OS was correlated with interferon-γ+ and tumor necrosis factor-α+ WT1-specific responses in delayed type hypersensitivity-infiltrating CD8+ T-lymphocytes. In conclusion, vaccination of AML patients with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD8+ T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224

    Performance of swabs, lavage, and diluents to quantify biomarkers of female genital tract soluble mucosal mediators

    Get PDF
    Background: Measurement of immune mediators and antimicrobial activity in female genital tract secretions may provide biomarkers predictive of risk for HIV-1 acquisition and surrogate markers of microbicide safety. However, optimal methods for sample collection do not exist. This study compared collection methods. Methods: Secretions were collected from 48 women (24 with bacterial vaginosis [BV]) using vaginal and endocervical Dacron and flocked swabs. Cervicovaginal lavage (CVL) was collected with 10 mL of Normosol-R (n = 20), saline (n = 14), or water (n = 14). The concentration of gluconate in Normosol-R CVL was determined to estimate the dilution factor. Cytokine and antimicrobial mediators were measured by Luminex or ELISA and corrected for protein content. Endogenous anti-HIV-1 and anti-E. coli activity were measured by TZM-bl assay or E. coli growth. Results: Higher concentrations of protein were recovered by CVL, despite a 10-fold dilution of secretions, as compared to swab eluents. After protein correction, endocervical swabs recovered the highest mediator levels regardless of BV status. Endocervical and vaginal flocked swabs recovered significantly higher levels of anti-HIV-1 and anti-E. coli activity than Dacron swabs (P<0.001). BV had a significant effect on CVL mediator recovery. Normosol-R tended to recover higher levels of most mediators among women with BV, whereas saline or water tended to recover higher levels among women without BV. Saline recovered the highest levels of anti-HIV-1 activity regardless of BV status. Conclusions: Endocervical swabs and CVL collected with saline provide the best recovery of most mediators and would be the optimal sampling method(s) for clinical trials. © 2011 Dezzutti et al

    Poly(I:C) Enhances the Susceptibility of Leukemic Cells to NK Cell Cytotoxicity and Phagocytosis by DC

    Get PDF
    α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells

    Antigen-specific cellular immunotherapy of leukemia

    No full text
    Advances in cellular and molecular immunology have led to the characterization of leukemia-specific T-cell antigens and to the development of strategies for effective augmentation of T-cell immunity in leukemia patients. While several leukemia-related antigens have been identified, this review focuses on the Wilms' tumor 1 (WT1) antigen and the proteinase 3 (Pr3) antigen that are overexpressed in leukemic cells and are already being used in the clinical setting. Moreover, WT1 is also overexpressed in a vast number of nonhematological solid tumors, thereby expanding its use as a promising target for cancer vaccines. Examples of spontaneous immune responses against WT1 and Pr3 in leukemia patients are presented and the potential of WT1 and Pr3 for adoptive T-cell immunotherapy of leukemia is discussed. We also elaborate on the use of professional antigen-presenting cells loaded with mRNA encoding WT1 exploiting the advantage of broad HLA coverage for therapeutic vaccination purposes. Finally, the summarized data underscore the potential of WT1 for the manipulation of T-cell immunity in leukemia and in cancer in general, that will likely pave the way for the development of more effective and generic cancer vaccines

    The HIV-2 genotype and the HIV-1 syncytium-inducing phenotype are associated with a lower virus replication in dendritic cells

    No full text
    During sexual transmission, HIV infects the mucosal dendritic cells and is transferred to CD4 T cells. Whether HIV variants of a particular genetic (sub)type or phenotype selectively infect dendritic cells (DC) or are preferentially transferred to T cells remains highly controversial. To avoid the cumbersome use of primary dendritic cells, in vitro dendritic cell models were generated from precursors, either hematopoietic progenitor cells (HPC) or monocytes (MO). Productive infection in the dendritic cells and transfer of the virus to T cells was assessed for a range of HIV variants. HPC-derived dendritic cells (HPC-DC) were more susceptible to HIV-1 than to HIV-2 isolates. The HIV-1 group O strains were more productive in HPC-DC than group M, but amongst the latter, no subtype-related difference was observed. Both non-syncytium-inducing (NSI) and SI HIV isolates and lab strains could productively infect HPC-DC, albeit with a different efficiency. Adding blocking antibodies confirmed that both CCR-5 and CXCR-4 co-receptors were functional. Biological HIV-1 clones of the NSI/R5 phenotype infected more readily HPC-DC than SI/X4 clones. MO-derived dendritic cells were, however, more exclusive in their preference for NSI/R5 clones. Some HIV variants, that did not grow readily in HPC-DC alone, could be rescued by adding resting or pre-activated T cells. The present data show that HIV-2 isolates and SI clones replicate less in model-DC, but no preference for a particular HIV-1 subtype was evident. Co-culture with T cells could "correct" a limited growth in dendritic cells. Clearly, both intrinsic dendritic cell susceptibility and enhancement by T cells are explained only partly by HIV genotype and phenotype. The in vitro dendritic cell models seem useful tools to further unravel interactions between HIV, DC, and T cells
    • …
    corecore